
Stud. Univ. Babeş-Bolyai Math. 58(2013), No. 4, 459–468

Oeljeklaus-Toma manifolds and locally
conformally Kähler metrics. A state of the art

Liviu Ornea and Victor Vuletescu

To the memory of Professor Mircea-Eugen Craioveanu (1942-2012)

Abstract. We review several properties about Oeljeklaus-Toma manifolds, espe-
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certain complex submanifolds.

Mathematics Subject Classification (2010): 53C55, 32J18.

Keywords: Compact complex manifolds, algebraic number fields, algebraic units,
locally conformally Kähler metrics, complex submanifold.

1. Introduction

The idea of associating compact complex manifolds to number fields is present
since the very beginnings of complex geometry. If one was to write a history of this
ideas, he would probably start from elliptic curves, which subtle links to number
theory were felt by L. Kronecker and K. Weierstrass, would then include H. Weyl,
whose research on complex tori have roots in the study of number fields units, and
would then arrive to A. Weil who extended this line of research to Kähler manifolds.

The goal of the present paper is to give an account on the recent progress in a
highly interesting class of compact complex manifolds associated to certain number
fields introduced by K. Oeljeklaus & M. Toma in 2005. Despite being a relatively new
topic, this kind of manifolds already provided a number of surprising results in the
non-Kähler geometry, as we shall see below.

2. Basic facts from algebraic number theory

We recall (cf. e.g. [7]) that an (abstract) number field is a finite extension K of
Q; it follows that K is isomorphic (as Q−algebras) to Q[X]/(f) where f ∈ Z[X] is a
(monic) irreducibile polynomial. An abstract number field K can be embedded into C
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by mapping X(modf) ∈ K to α, where α is a root of f. It follows that K has exactly
n embeddings into C, where n = deg(f). Usually, one divides the roots of f into two
subsets: the real ones, and call the corresponding embeddings real embeddings of K,
and the complex, non-real ones, that come in pairs of conjugate numbers (and call
the resulting embeddings accordingly, complex embeddings). We shall denote by s the
number of real embeddings and by 2t the number of complex ones; hence n = s+ 2t.

An algebraic integer of K is an element a ∈ K satisfying a monic equation with
integer coefficients. The set of all algebraic integers of K forms a ring, usually denoted
by OK . For instance, if p > 2 is some prime number and K = Q(ζp) (where ζp is a
primitive root of unity of order p) then OK = Z[ζp]. But in the general case, such nice
descriptions of the ring of integers are no longer available. Eventually, let us recall
that seen as Z−module, OK is free of rank n.

The invertible elements of OK are called units, and the (multiplicative) group
of units is denoted O∗

K . By the celebrated Dirichlet’s units theorem, O∗
K is a group

of rank s+ t− 1. For instance, if K = Q(
√

3) then any solution (a, b) ∈ Z2 of the Pell
equation

x2 − 3y2 = 1
will define a unit a+ b

√
3 ∈ O∗

K . By contrast, in K = Q(i
√

3) the only units are ±1
and ±ε, where ε is a non-real root of unity of order 3. Again, in the general case, there
are no immediate descriptions of the group of units.

3. Oeljeklaus-Toma manifolds

3.1. The construction

The following construction was done in [8].
Fix a number field K with s real embeddings and 2t > 0 complex embeddings.

Suppose the embeddings σ1, . . . , σn of K are labelled in such a way that the first s
ones are real, and σs+k = σs+t+k for all k, 1 ≤ k ≤ t.

We say that a unit u ∈ O∗
K is totally positive if σi(u) > 0 for all real embeddings

σi, 1 ≤ i ≤ s. The set O∗,+
K , of totally positive units form a subgroup of O∗

K , obviously
of finite index - since for any unit u, its square u2 is totally positive.

Let H = {z ∈ C ; Im z > 0} be the upper half-plane. For any a ∈ OK denote by
Ta the automorphism of Hs × Ct given by

Ta(z1, . . . , zt+s) = (z1 + σ1(a), . . . , zs+t + σs+t(a)) .

Similary, for any totally positive unit u, let Ru be the automorphism of Hs × Ct
defined by

Ru(z1, . . . , zt+s) = (σ1(u)z1, . . . , σs+t(u)zt+s) .
Note that the totally positivity of u is needed for Ru to act on Hs × Ct.

The above maps define for any subgroup U ⊂ O∗,+
K a fixed-point-free action of

the semidirect product U n OK on Hs × Ct. The main point is that one can always
find subgroups U such that the above action is also discrete and cocompact; such
subgroups are called admissible subgroups. Note that if U is an admissible subgroup
then necessarily one has rankZ(U)+ rankZ(OK) = 2(s+ t), hence rankZ(U) = s. This
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explains why the condition t > 0 is needed: otherwise we would have that the rank of
O∗
K is s− 1, strictly less than s, and hence admissible subgroups could not exist.

By definition, if U is an admissible subgroup, the compact quotient

Hs × Ct/U nOK
is called an Oeljeklaus-Toma manifold and is usually denoted by X(K,U).

Remark 3.1. For s = t = 1, one recovers the familiar Inoue surface SM , [5]. This
is known to be (real) homogeneous, indeed a solvmanifold. Accordingly, H. Kasuya
proved the following:

Proposition 3.2. [6, §6] Oeljeklaus-Toma manifolds are solvmanifolds.

Indeed, Kasuya proved that

X(K,U) = G/U nOK , with G = Rs nφ (Rs × Ct).

Here φ acts as follows:

φ(t1, . . . , ts) = diag
(
et1 , . . . , ets , eψ1+

√
−1φ1 , . . . , eψt+

√
−1φt

)
,

where ψk = 1
2

∑s
1 bikti, ϕk =

∑s
1 cikti, with the coefficients bik, cik given by expressing

|σs+k(a)| = e
1
2

∑s
1 bikti , and hence σs+k(a) = e

1
2

∑s
1 bikti+

∑s
1 cikti .

The natural complex structure on Rs nφ (Rs × Ct) is seen to descend to the
quotient and to be integrable, but the induced complex structure is G left-invariant
and not G right-invariant, and hence X(K,U) is not a complex Lie group. This is in
accordance with the result proven in [8] (that we also recall below, see 3.5) that the
biholomorphism group of X(K,U) is discrete.

3.2. Basic invariants

We next investigate the basic invariants of Oeljeklaus-Toma manifolds. We start
by looking at their Betti numbers.

Theorem 3.3. ([8]) If K is a number field with s real embeddings and t complex em-
beddings, and if U is an admissible subgroup of O∗

K , then:
a) b1 (X(K,U)) = s;
b) if, in addition, there is no proper subfield L ⊂ K such that U ⊂ O∗

L, then

b2 (X(K,U)) =
(
s

2

)
.

Sketch of proof. The basic idea to compute Hi(X(K,U),Q) is as follows. Since the
universal cover of X(K,U) is contractible, one is reduced to compute the group co-
homology Hi(U n OK ,Q). Next, as U n OK is a semidirect product of two abelian
groups, and since the cohomology of abelian groups is well-known, one can simply use
the Lyndon-Hochschild-Serre spectral sequence

Ep,q2 = Hp(U,Hq(OK ,Q)) ⇒ Hp+q(U nOK ,Q).

Now the claims of a) and b) follow by a careful inspection of the differentials in the
above spectral sequence.
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Alternatively, one can prove a) directly, along the following lines. An immediate
computation shows that

TaRuT
−1
a R−1

u = T(1−u)a

for any u ∈ U and any a ∈ OK . Now one can check that the subgroup of OK generated
by elements of the form (1−u)a is of finite index, so U is a quotient of H1(X(K,U),Z)
by a finite subgroup; consequently, the first Betti number will equal the rank of U.

Remark 3.4. In fact, one can explicitely exhibit s linearly independent closed 1-forms
on X(K,U). Indeed, if we let zk = xk + iyk for all k, then the differential forms

ωk =
1
yk
dyk, k = 1, . . . , s (3.1)

defined on Hs × Ct are U nOK−invariant, hence descending to forms on X(K,U).

Next, we look at some analytical invariants.

Theorem 3.5. ([8]) On any Oeljelkaus-Toma manifold X = X(K,U) the holomorphic
vector bundles: Ω1

X , the holomorphic tangent bundle TX and any positive power KnX of
the canonical bundle have no global holomorphic sections. Consequently, H1,0(X) =
H0(X,Ω1

X) = 0, X has finitely many automorphisms and its Kodaira dimension is
−∞.

By contrast, h0,1(X) = dimC H
1(X,OX) ≥ s. In particular, since h0,1 6= h1,0, it

follows that for s > 0 the manifold X cannot carry Kähler metrics.

Sketch of proof. The assertions on the absence of global sections of all the vector bun-
dles in the statement follow in a rather direct way: one shows that the corresponding
bundles on the universal cover have no non-zero global sections which are invariant
under U nOK . The key ingredient is the following fact: if one factors Hs×Ct by OK
only (hence getting a non-compact manifold, which covers X), the quotient has no
global non-constant holomorphic function (exactly as in the compact case).

4. Oeljeklaus-Toma manifolds and locally conformally Kähler
geometry

4.1. LCK geometry

At this point, we recall the notion of locally conformally Kähler manifold, LCK
for short, see [3]. By definition, a hermitian metric g on a complex manifold X is LCK
if X can be covered by open subsets

X =
⋃
α∈A

Uα

with the property that on each Uα there exists a Kähler metric gα wich is conformal
to the restriction of g to Uα,

gα = e−fαg|Uα

for some smooth function fα defined on Uα. If one of the Uα equals the whole X, we
say that g is globally conformally Kähler, GCK for short.
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There are at least two different, equivalent ways, of saying that a hermitian
metric g is LCK. One of them is as follows. Let g be a hermitian metric on the
complex manifold X and let ω be its associated Kähler form,

ω(X,Y ) = g(XJY )

where J is the almost-complex structure of X. Then g is LCK if and only if there
exists a closed 1-form θ (called the Lee form of g) such that

dω = θ ∧ ω.
Notice that g is GCK if and only if θ is exact.

An equivalent definition is as follows. Let X̃ be the universal cover of X. Then
X has an LCK metric iff X̃ has a Kähler metric Ω upon which the fundamental group
of X (seen as the group of deck transforms of X̃) acts by homotheties,

γ∗(Ω) = χ(γ)Ω,∀γ ∈ π1(X) (4.1)

for some χ(γ) ∈ R>0. Notice that in order to obtain non-GCK metrics on X, at least
one χ(γ) above should be different from 1.

This last way of characterizing LCK manifolds is particularly useful in exhibiting
examples. For instance, we can see that the so-called diagonal Hopf manifolds are
LCK. Recall that such a manifold is by definition the quotient of Cn \ {0} under the
action of Z generated by the map

(z1, . . . , zn) 7→ (αz1, . . . , αzn)

where α ∈ C, |α| 6= 1. Clearly, in this way, the action of Z is by homotheties with
respect to the standard flat metric on Cn \ {0},

ωflat = dz1 ∧ dz1 + · · ·+ dzn ∧ dzn.
In fact, all Hopf manifolds Cn \ {0}/〈A〉, with A being a linear operator with eigen-
values of strictly smaller than 1 absolute values are LCK, see [11].

Locally conformally Kähler metrics were introduced for the first time by I. Vais-
man in the mid 80’s. Since then, by the effort of many people, it was shown that
almost all non-Kähler compact complex surfaces have LCK metrics, see [1], [2]. Still,
in higher dimensions, until the paper of Oeljeklaus-Toma appeared, the only known
LCK structures known were basically Hopf manifolds (and their complex submani-
folds).

Theorem 4.1. ([8]) Let K be a number field with t = 1 complex embeddings. Then, for
any admissible group of totally positive units U, the manifold X(K,U) has an LCK
metric.

Proof. Let H : Hs × C → C be the map

H(z1, . . . , zs, zs+1) =
s∏
i=1

1
Im(zi)

+ |zs+1|2.

By direct computation, one checks that H is a Kähler potential, that is, its associated
(1, 1)− form

ω =
√
−1∂∂H
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is a Kähler metric. Clearly, any translation Ta (a ∈ OK) leaves ω invariant, while for
any u ∈ U we have

R∗
u(ω) = |σ(u)|2ω

where σ is the only (up to complex conjugation) complex embedding of K.
We see that U n OK acts by homotheties upon ω, hence X(K,U) has a LCK

metric. On the other hand, this metric will not be GCK, as X(K,U) cannot carry
Kähler metrics.

Remark 4.2. 1. For s = t = 1, the above metric coincides with the one found by F.
Tricerri in [13] on the Inoue surfaces of type SM .

2. We stress that, unlike
√
−1∂∂H, the above potential H is not acted on by

homotheties. Moreover, no potential with this automorphy property can exist on
Oeljeklaus-Toma manifolds, as this would impose the deck group to be isomorphic to
Z, [10].

Remark 4.3. A very important subclass of LCK manifolds is defined in terms of the
Lee form. Namely, if (X, g) is an LCK manifold with Lee form θ, then (X, g) is called
a Vaisman manifold if

∇θ = 0
where ∇ is the Levi-Civita connection of the metric g. Typical examples are the
diagonal Hopf manifolds (see [4] for Hopf surfaces or [11] for higher dimensions);
other examples appear on surfaces, [1]. Compact Vaisman manifolds have very good
geometric properties and are intimately related to Sasakian manifolds.

It is easily seen that the LCK metric in [8] is not Vaisman. Moreover:

Proposition 4.4. ([6]) Oeljeklaus-Toma manifolds cannot carry any Vaisman metric.

This is again consistent with the result in [1] that no Inoue surface can carry
Vaisman metrics. Kasuya’s proof uses the homogeneous presentation of the Oeljeklaus-
Toma manifold and a characterization of the existence of Vaisman metrics on certain
types of solvmanifolds in terms of cohomology of Lie algebras.

4.2. The Vaisman conjecture

The Vaisman conjecture. In [14], it was asserted that any compact LCK manifold
X should have at least one odd Betti number of odd degree:

b2k+1(X) = 1(mod 2)

for some k. The conjecture was a long-standing one, until the paper of [8] appeared.
The counter-example given there is as follows. Take any number field with s = 2, t = 1
and any admissible subgroup U ⊂ O∗,+

K . Then the manifold X(K,U) will carry an
LCK metric, by the above 4.1. On the other hand, X(K,U) is of (complex) dimension
s+t = 3 and its first Betti number is b1(X) = s = 2 by 3.3, a). Consequently, one also
has b5(X) = b1(X) = 2 from Poincaré duality. As X(K,U) carries a global, nowhere
vanishing 1-form (recall the forms defined in (3.1)), its Euler-Poincaré characteris-
tic vanishes, so b3(X) is also even. We see X(K,U) is indeed a counter-example to
Vaisman’s conjecture.
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4.3. Submanifolds of Oeljelkaus-Toma manifolds

As noticed already, in the case s = t = 1, the Oeljeklaus-Toma manifolds are
Inoue surfaces of type SM . This particular kind of surfaces are remarkable, as they
carry no closed analytic curve. It is thus a natural question to ask about submanifolds,
or more general, closed analytic subspaces of Oeljeklaus-Toma manifolds. Of course,
for convenient choices of the number field K and for the admissible subgroup U, the
corresponding manifold X(K,U) will contain proper submanifolds. For instance, if
K is a proper extension of another number field L and if U ⊂ O∗

L, then X(L,U) ⊂
X(K,U), see [8] for details. It is thus reasonable to restrict our attention to the cases
with “nice geometry”, more exactly to the case t = 1, where the existence of LCK
metrics holds. In this case, one has:

Theorem 4.5. ([9]) Let K be a number field with t = 1 and let X = X(K,U) be an
associated Oeljeklaus-Toma manifold. If Y ⊂ X is a closed connected reduced analytic
subspace, then either Y = X or Y is a point. In other words, X carries no proper
closed analytic subspaces, i.e. it is a simple manifold, in the sense of Campana. In
particular, LCK Oeljeklaus-Toma manifolds do not admit non-constant meromorphic
functions.

The proof relies on two deep facts. One is of purely geometrico-differential nature:
the LCK metric leads to a “highly-positive” (1, 1)−form, derived from the Lee form of
the metric. The positivity of this form implies that a certain, very naturally defined
foliation Σ on X has a very intriguing property: if a closed connected analytical
subspace Y of X contains a point z sitting on the leaf Σx, then the whole Σz is
contained in Y. Now, if Y ⊂ X is a proper analytic subspace (i.e. dim(Y ) > 0) one
shows that the closure of the leaves is the whole X; but to achieve this, one has
to use a deep result in algebraic number theory, namely the so-called “strong adelic
approximation theorem”.

In the very general case (hence without restricting to t = 1, i.e. to LCK geome-
try), one can show

Theorem 4.6. ([15]) Let X be an Oeljeklaus-Toma manifold. Then X carries no closed
1-dimensional analytic subspaces.

Recently the same author obtained an extension of this theorem, to

Theorem 4.7. ([16]) Let X be an Oeljeklaus-Toma manifold. If S ⊂ X is a smooth
compact surface, then S is a Inoue surface.

An interesting (and apparently rather difficult) question imposes by itself:

Question 4.8. Is it true that if X = X(K,U) is an Oeljeklaus-Toma manifold and
if X ′ ⊂ X is a connected, closed, reduced, analytical space, then X ′ is of the form
X ′ = X(K ′, U) with K ′ ⊂ K and U ⊂ U (i.e X ′ is obtained by the procedure
described at the beginning of the section)?

Note that an affirmative answer would imply all theorems above, as fields with
tK = 1 complex embeddings have no proper subfields K ′ with tK′ > 0, thus we would
get Theorem 4.5, and also Theorem 4.6, since in quadratic imaginary fields the rank
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of the group of units is zero and Theorem 4.7, as OT-surfaces are Inoue surfaces,
according to Remark 3.1.

4.4. LCK rank of Oeljeklaus-Toma manifolds

The deep interplay between geometry and number theory, emphasized in the
skecth of proof of 4.5 is actually much more extended. We illustrate this in the fol-
lowing.

Recall that one of the possible definitions of an LCK metric on a manifold X
involves the homothety factors described by relation (4.1). Note that if γ ∈ π1(X) is
a deck-transformation with χ(γ) = 1, then actually γ is an isometry of the Kähler
metric Ω. Hence, a natural question occurs: “how many” of the elements γ ∈ π1(X)
are “honest homotheties”, i.e. with χ(γ) 6= 1? Put in a more rigourous setup:

Question 4.9. Determine how large can be the rank of the group

{χ(γ) ; γ ∈ π1(X)}. (4.2)

Of course, for LCK, non-GCK manifolds, this LCK rank is bounded from below
by 1 (as at least one of the γ′s must not be an isometry) and from above by the first
Betti number of X. Until the Oeljeklaus-Toma manifolds appeared, in all examples
known, the rank above actually had only these two extremal values: either 1, or b1(X).
Some Oeljeklaus-Toma manifolds are -so far- the only known examples when this rank
is non-trivial; more precisely, we have:

Theorem 4.10. ([12]) Let K be a number field with t = 1 and X = X(K,U) be an
Oeljeklaus-Toma manifold. Then, the rank of the above group (defined in (4.2)) is
different form 1 and b1(X) if and only if K is a quadratic extension of a (totally real)
number field. In this last case, the rank equals b1(X)

2 , and this possibility occurs for
Oeljeklaus-Toma manifolds of arbitrary high dimensions.

The basic idea behind the proof is as follows. For any u ∈ U (seen as an element
in π1(X)), the automorphy factor χ(u) is actually |σ(u)|, where σ is the only (up to
complex conjugation) complex embedding of K. Now, if the rank is different from
b1(X), then at least one u ∈ U must have |σ(u)| = 1. This forces u to be a reciprocal
unit, i.e. its minimal polynomial over Q to be a reciprocal one. But if u is a reciprocal
unit, then the field K ′ = Q(u+ 1

u ) is a subfield of K, of relative degree 2, and it can be
easily shown that K ′ must actually be totally real. Eventually, to produce infinitely
many examples of Oeljeklaus-Toma manifolds with non-trivial rank, one reverses the
process. One starts with a totally real number field K ′ (for instance with cyclotomic
fields) and extend it to a field K ⊃ K ′ with [K : K ′] = 2, taking care to ramify
precisely one real embedding of K ′.

4.5. Oeljeklaus-Toma manifolds with t > 1
As already noticed, the main ingredient (apart from the number-theoretical ones)

in most of the results above is the existence of LCK metrics. So far, existence of such
metrics is known to hold on Oeljeklaus-Toma manifoldsX(K,U) for which the number
field K has precisely t = 1 complex embeddings. It is thus natural to ask whether this
condition can be dropped.
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Actually, as already noticed in [8], in the other “extreme case”, i.e. if K is a
number field with s = 1 real embedings (and t > 1 complex ones) then for any choice
of the admissible group of units U, the resulting Oeljeklaus-Toma manifold X(K,U)
has no LCK metric.

There are (so far) at least two results showing that probably, if K is a number
field with t > 1 complex embedings, then no Oeljeklaus-Toma manifold X(K,U)
carries an LCK metric.

The first one was already recalled (4.4): an Oeljeklaus-Toma manifold cannot
carry Vaisman metrics. But this does not rule out the possibility of existence of non-
Vaisman, LCK metrics. However, when there are “too many” complex embeddings,
this is not true. More exactly, we have:

Theorem 4.11. ([17]) let K be a number field with t > 2s. then for any admissible
group of units U , the Oeljeklaus-Toma manifold X(K,U) carries no LCK metric.

The proof relies again on the interplay between differential geometry and number
theory. Namely, first one shows that if an LCK metric exists on X(K,U) then, by
looking at the automorphy factors χ(u) of any unit u ∈ U one gets that |σ(u)| is the
same for any complex embedding σ of K. But then, one exploits a nice fact about
algebraic integers with “many” Galois conjugates of the same absolute value: their
minimal polynomial f must actually be of the form f(X) = g(Xt), and from here one
easily derives a contradiction.
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